Self-Organizing Event Maps
نویسندگان
چکیده
To take further steps along the path toward true artificial intelligence, systems must be built that are capable of learning about the world around them through observation and explanation. These systems should be flexible and robust in the style of the human brain and little precompiled knowledge should be given initially. As a step toward achieving this lofty goal, this thesis presents the self-organizing event map (SOEM) architcture. The SOEM architecture seeks to provide a way in which computers can be taught, through simple observation of the world, about typical events in a way that is flexible and robust. The self-organizing event map, as a data structure, stores a plane of event models that are continually updated and organized according to events that are observed by the system. In this manner, the event map produces clusters of similar events and provides an implicit representation of the regularity within the event space to which the system has been exposed. As part of this thesis, a test system that makes use of self-organizing event map architecture has been developed in conjunction with the Genesis Project at the Computer Science and Artificial Intelligence Laboratory (CSAIL) at MIT. This system receives input through a natural-language text interface and, through repreated training cycles, becomes capable of discerning between typical and exceptional events. Clusters of similar events develop within the map and these clusters act as an implicit form of the more commonly used (and explicit) notion of scripts and capability lists. For example, a trained map may recognize that dogs often run, but never fly. Therefore if a new input is received that describes a flying dog, the map would be capable of identifying the event as exceptional (or simply erroneous) and that further attention should be paid. By using clusters of similarity as an implicit representation, the self-organizing event maps presented here more accurately mimic natural memory systems and do not suffer from being tied to the limitations of a specific explicit representation of regularity. Thesis Supervisor: Patrick Henry Winston Title: Ford Professor of Artificial Intelligence and Computer Science
منابع مشابه
Green Product Consumers Segmentation Using Self-Organizing Maps in Iran
This study aims to segment the market based on demographical, psychological, and behavioral variables, and seeks to investigate their relationship with green consumer behavior. In this research, self-organizing maps are used to segment and to determine the features of green consumer behavior. This was a survey type of research study in which eight variables were selected from the demographical,...
متن کاملEvent-driven sensor deployment using self-organizing maps
Coverage is an important optimization objective in preand post-deployment stage of a wireless sensor network. In this paper, we address the issue of placing a finite set of sensors to cover an area of arbitrary geometry. Unlike many existing works concerned with uniform coverage of a target area, we take in account the realistic consideration of the probability density for events to be sensed, ...
متن کاملSteel Consumption Forecasting Using Nonlinear Pattern Recognition Model Based on Self-Organizing Maps
Steel consumption is a critical factor affecting pricing decisions and a key element to achieve sustainable industrial development. Forecasting future trends of steel consumption based on analysis of nonlinear patterns using artificial intelligence (AI) techniques is the main purpose of this paper. Because there are several features affecting target variable which make the analysis of relations...
متن کاملGait Based Vertical Ground Reaction Force Analysis for Parkinson’s Disease Diagnosis Using Self Organizing Map
The aim of this work is to use Self Organizing Map (SOM) for clustering of locomotion kinetic characteristics in normal and Parkinson’s disease. The classification and analysis of the kinematic characteristics of human locomotion has been greatly increased by the use of artificial neural networks in recent years. The proposed methodology aims at overcoming the constraints of traditional analysi...
متن کاملGait Based Vertical Ground Reaction Force Analysis for Parkinson’s Disease Diagnosis Using Self Organizing Map
The aim of this work is to use Self Organizing Map (SOM) for clustering of locomotion kinetic characteristics in normal and Parkinson’s disease. The classification and analysis of the kinematic characteristics of human locomotion has been greatly increased by the use of artificial neural networks in recent years. The proposed methodology aims at overcoming the constraints of traditional analysi...
متن کاملGait Based Vertical Ground Reaction Force Analysis for Parkinson’s Disease Diagnosis Using Self Organizing Map
The aim of this work is to use Self Organizing Map (SOM) for clustering of locomotion kinetic characteristics in normal and Parkinson’s disease. The classification and analysis of the kinematic characteristics of human locomotion has been greatly increased by the use of artificial neural networks in recent years. The proposed methodology aims at overcoming the constraints of traditional analysi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004